
1

Hack Your Language!

CS164: Introduction to Programming
Languages and Compilers, Fall 2010

UC Berkeley upper-level elective course

Ras Bodik
Thibaud Hottelier

James Ide

The Why of Who and What

I used to teach a successful compiler course:

Aha! ugrads are future developers, not compiler jocks.

Also mindshare. Reverse the brain drain to AI and bio.

2

you know what these are

What’s one PL skill a developer should know?

Code reuse mechanisms have evolved:

 1977 libraries of procedures

 1986 design patterns

 2006 DSLs

DSL is how code is reused today. Are students ready?

 Rinard: Don’t write a DSL. Who will maintain it?

 Necula: DSLs revolutionized a startup. But their
 programmers don’t dare to work with ASTs.

3

4

Take cs164. Become unoffshorable.

“We design them here, but the labor is cheaper in Hell.”

Principles behind course design

Teach PL principles via DSL design and implementation

Hard in a messy language. DSLs in Lua, which is in Python.

Learn how to design and implement a DSL

Final exam replaced with a project: create a DSL in 2 weeks.

Piggybacking: three birds with one stone

coroutines + backtracking + regexes; …

Parsing: most of us want to deemphasize it

Yet it’s one of the more useful skills. How to teach it?
5

Nine weekly
projects

6

interpreter (abstractions)

parser (syntax-directed xslation, external DSLs)

web browser (embedded DSLs, concurrency)

Language abstractions

prolog

with coroutines, it’s a few lines;

later used

7

yield: full coroutines

bytecode compiler, regex,
backtracking

interpreter
closures, lexical scoping,

desugaring, iterators

The Parsing story

1. Write a random expression generator.

2. Invert this recursive generator into a parser by
replacing print with scan and random with oracle.

3. Now write this parser in Prolog, which is your oracle.
This is your recursive descent parser.

4. Look, this prolog parser has no negation. It’s Datalog!

5. Datalog can be evaluated bottom-up, with dynamic
programming. Now we got CYK parser.

6. Datalog evaluation can be optimized with a Magic Set
Transformation, which yields Earley Parser.

8

Parsing and external DSLs

9

google calculator

syntax-directed translation

disambiguation (%left, %prec)

Earley parser

Web browser: layout and scripting

10

Rx

from events to high-order dataflow;
reactive programming a`la RxJS

jQuery
embedded DSL for declarative
DOM manipulation

layout engine
from constraints to attribute
grammars; add OO to language

Contest winners in yellow jerseys

11

Testimonials

We are just about done with PA6, and I am still
marveling at what we have created.

I think this class was an amazing first choice at an
upper-div CS class. (Although the workload is pretty
brutal)

12

